Introduction

Our research involves the development of powdered phosphors that can serve as chemical sensors for a variety of gaseous pollutants. The national interest in the development of chemical sensors is highlighted in the April 16, 2002 NSF letter underscoring the importance of the “development of the next generation of chemical and biological sensors”. This increase in the interest in sensors is partly based on the recommendation of a NSF workshop held in January 2002.1 Our sensors indicate the presence of a gas by changes in the photoluminescence, PL, intensity relative to nitrogen as a reference gas. We have been exploring a variety of powdered semiconductor phosphors primarily developed in the 1960’s and early 1970’s for use in lighting and colored television as candidates for optically coupled chemical sensors. Powdered phosphors are relatively easy to prepare, stable, brightly emissive, and appear to be highly selective as chemical sensors. As a result, sensors can be developed that do not consist of single-crystal components or colloids and do not require laser excitation. In addition, a wide variety of chemically different phosphors with different impurities (added to increase the fluorescence) can be investigated in an effort to understand how the chemical make-up of the surface affects the sensor response. Our hope is the development of a family of chemical sensors based on these powdered phosphors that have both good sensitivity and complementary selectivity so that they may be used in gas sensor arrays. In the few powdered phosphors that we have investigated, we have found a significant difference in the response of the different phosphors to different gases. In addition, studying changes in PL upon exposure to various substances provides a novel means to explore the surface chemistry at the solid/gas interface.

Our work demonstrates that sensors based on the PL of semiconductor materials can be developed that are highly selective toward certain compounds and the selectivity can be varied by changing the composition of the semiconductor.

Completed Work and Findings

Much of our work thus far has focused on the powdered tellurium doped CdS phosphor, pCdS:Te.2, 3 This material is easily prepared and is brightly emissive having a emission maximum of 670 nm (red-orange in color). When exposed to sulfur dioxide, there is a distinct decrease in the PL intensity as shown in figure 1a. The wavelength of the emission does not change, just the PL intensity. On the left side is the PL spectrum of the pCdS:Te under a nitrogen atmosphere and then moving off to the right is the PL intensity at 670 nm resulting from alternating the exposure between nitrogen and various concentrations of sulfur dioxide. The PL response is both reversible and reproducible and the magnitude of the PL change is dependent on the concentration of the sulfur dioxide. Figure 1b shows how pCdS:Te responds to ammonia. Again the PL response is both reversible and reproducible and the magnitude of the PL change is dependent on the concentration of ammonia. In this case, however, the PL increases upon exposure to ammonia as opposed to decreasing under sulfur dioxide exposure. Exposure to 100% ammonia produces an interesting spike.
Explanations of the Effect

The variation in the PL intensity of pCdS:Te is caused by the interaction of the adsorbed gas with the phosphor. pCdS:Te is a n-type semiconductor. In the near surface region of the pCdS:Te particles, there is an electric field created by the equilibration of the pCdS:Te Fermi level with surface states which are created by dangling bonds (a result of the truncation of the lattice), elemental vacancies, and impurities in the near surface region. Electrons flow out from the pCdS:Te to these surface states thus depleting the pCdS:Te of electrons and producing an electric field at the surface. When the phosphor is exposed to the Lewis base ammonia, the ammonia adsorbs onto the surface and donates electron density to the pCdS:Te causing the electronic field to be reduced relative to the field under nitrogen. The opposite process occurs when the phosphor is exposed to the Lewis acid sulfur dioxide which accepts electron density from the phosphor thus increasing the electric field. The PL intensity changes as a result of the interrelationship between the size of the electric field in the near surface region and the PL intensity. This interrelationship is explained by the Dead Layer model.

Langmuir adsorption isotherm model

The PL response for the pCdS:Te phosphor is concentration/pressure dependent so it should be able to be modeled by the Langmuir adsorption isotherm model. In 1918 Langmuir developed equations that model the relationship between gas pressure and the amount of adsorbed gas on the surface of a solid. This model has been successfully used to model adsorption on a variety of semiconductor surfaces. In the simplest case, Langmuir assumed: (1) that the surface of the solid contains a fixed number of adsorption sites; (2) at any temperature and gas pressure, a fraction of the sites are occupied at equilibrium; (3) each site can only hold one adsorbed molecule (4) each site has the same tendency to absorb a gas molecule (5) there is no interaction between one adsorbed molecule and another; (6) and only one monolayer can be adsorbed. From this the following equation can be derived:

\[
\frac{1}{\theta} = 1 + \frac{1}{KP_A}
\]

A plot of \(1/\theta\) vs. \(1/P_A\) will give a linear plot with a slope of 1/K and an intercept of 1.

Figure 2a and 2b show how the fractional surface coverage on pCdS:Te varies with the partial pressure of sulfur dioxide and ammonia respectfully. At low partial pressure the data in both plots appears to follow typical Langmuir behavior; however, at higher partial pressures (above ~0.2 atm) there appears to be a step in which the data no longer follows Langmuir behavior. This step is reproducible and appears independent of whether one starts at high or low gas pressure. Plots of \(1/\theta\) vs. \(1/P_A\) for the data points just below 0.2
atm, shown in the insets of figures 2a and 2b, yield linear plots for both gases, indicating that Langmuir’s assumptions hold. In both plots the first points were omitted due to what we believe to be our inability to reproducibly control the gas concentration at low flowrates.

Figure 2 Fractional surface coverage on CdS:Te as a function of the partial pressure of a) sulfur dioxide and b) ammonia

Projects: We are interested in further studying the adsorption effects of gaseous ambients on the PL of various powdered phosphors in an effort to evaluate the applicability of these materials as chemical sensors and to gain insight into the adsorption process at the solid/gas interface. We have two main research objectives for this summer:

1. Continue development of sensors that are composed of chemically different phosphor materials specifically ZnSiO$_4$:Mn.
2. Develop a thermally and chemically inert method to mount the phosphors. Use this method to explore the effect temperature has on the adsorption of gas molecules on these phosphor materials, specifically ZnO, to see if these materials will function as high temperature sensors.
3. Explore the PL decay curves of the phosphors under various atmospheres to distinguish the mechanism behind the sensor effect.

References