Excerpts from The Origin of Species (First Edition, 1859) by Charles Darwin
(accessed from http://pages.britishlibrary.net/charles.darwin/texts/origin1859/origin01.html)

Introduction

When on board H.M.S. Beagle, as naturalist, I was much struck with certain facts in the distribution of the inhabitants of South America, and in the geological relations of the present to the past inhabitants of that continent. These facts seemed to me to throw some light on the origin of species -- that mystery of mysteries, as it has been called by one of our greatest philosophers. On my return home, it occurred to me, in 1837, that something might perhaps be made out on this question by patiently accumulating and reflecting on all sorts of facts which could possibly have any bearing on it. After five years' work I allowed myself to speculate on the subject, and drew up some short notes; these I enlarged in 1844 into a sketch of the conclusions, which then seemed to me probable: from that period to the present day I have steadily pursued the same object. I hope that I may be excused for entering on these personal details, as I give them to show that I have not been hasty in coming to a decision.

My work is now nearly finished; but as it will take me two or three more years to complete it, and as my health is far from strong, I have been urged to publish this Abstract. I have more especially been induced to do this, as Mr Wallace, who is now studying the natural history of the Malay archipelago, has arrived at almost exactly the same general conclusions that I have on the origin of species. Last year he sent to me a memoir on this subject, with a request that I would forward it to Sir Charles Lyell, who sent it to the Linnean Society, and it is published in the third volume of the journal of that Society. Sir C. Lyell and Dr Hooker, who both knew of my work -- the latter having read my sketch of 1844 -- honoured me by thinking it advisable to publish, with Mr Wallace's excellent memoir, some brief extracts from my manuscripts.

This Abstract, which I now publish, must necessarily be imperfect. I cannot here give references and authorities for my several statements; and I must trust to the reader reposing some confidence in my accuracy. No doubt errors will have crept in, though I hope I have always been cautious in trusting to good authorities alone. I can here give only the general conclusions at which I have arrived, with a few facts in illustration, but which, I hope, in most cases will suffice. No one can feel more sensible than I do of the necessity of hereafter publishing in detail all the facts, with references, on which my conclusions have been grounded; and I hope in a future work to do this. For I am well aware that scarcely a single point is discussed in this volume on which facts cannot be adduced, often apparently leading to conclusions directly opposite to those at which I have arrived. A fair result can be obtained only by fully stating and balancing the facts and arguments on both sides of each question; and this cannot possibly be here done.

I much regret that want of space prevents my having the satisfaction of acknowledging the generous assistance which I have received from very many naturalists, some of them personally unknown to me. I cannot, however, let this opportunity pass without expressing my deep obligations to Dr Hooker, who for the last fifteen years has aided me in every possible way by his large stores of knowledge and his excellent judgement.

In considering the Origin of Species, it is quite conceivable that a naturalist, reflecting on the mutual affinities of organic beings, on their embryological relations, their geographical distribution, geological succession, and other such facts, might come to the conclusion that each species had not been independently created, but had descended, like varieties, from other species. Nevertheless, such a conclusion, even if well founded, would be unsatisfactory, until it could be shown how the innumerable species inhabiting this world have been modified so as to acquire that perfection of structure and co-adaptation which most justly excites our admiration. Naturalists continually refer to external conditions,
such as climate, food, &c., as the only possible cause of variation. In one very limited sense, as we shall hereafter see, this may be true; but it is preposterous to attribute to mere external conditions, the structure, for instance, of the woodpecker, with its feet, tail, beak, and tongue, so admirably adapted to catch insects under the bark of trees. In the case of the mistletoe, which draws its nourishment from certain trees, which has seeds that must be transported by certain birds, and which has flowers with separate sexes absolutely requiring the agency of certain insects to bring pollen from one flower to the other, it is equally preposterous to account for the structure of this parasite, with its relations to several distinct organic beings, by the effects of external conditions, or of habit, or of the volition of the plant itself.

The author of the 'Vestiges of Creation' would, I presume, say that, after a certain unknown number of generations, some bird had given birth to a woodpecker, and some plant to the mistletoe, and that these had been produced perfect as we now see them; but this assumption seems to me to be no explanation, for it leaves the case of the coadaptations of organic beings to each other and to their physical conditions of life, untouched and unexplained.

It is, therefore, of the highest importance to gain a clear insight into the means of modification and coadaptation. At the commencement of my observations it seemed to me probable that a careful study of domesticated animals and of cultivated plants would offer the best chance of making out this obscure problem. Nor have I been disappointed; in this and in all other perplexing cases I have invariably found that our knowledge, imperfect though it be, of variation under domestication, afforded the best and safest clue. I may venture to express my conviction of the high value of such studies, although they have been very commonly neglected by naturalists.

From these considerations, I shall devote the first chapter of this Abstract to Variation under Domestication. We shall thus see that a large amount of hereditary modification is at least possible, and, what is equally or more important, we shall see how great is the power of man in accumulating by his Selection successive slight variations. I will then pass on to the variability of species in a state of nature; but I shall, unfortunately, be compelled to treat this subject far too briefly, as it can be treated properly only by giving long catalogues of facts. We shall, however, be enabled to discuss what circumstances are most favourable to variation. In the next chapter the Struggle for Existence amongst all organic beings throughout the world, which inevitably follows from their high geometrical powers of increase, will be treated of. This is the doctrine of Malthus, applied to the whole animal and vegetable kingdoms. As many more individuals of each species are born than can possibly survive; and as, consequently, there is a frequently recurring struggle for existence, it follows that any being, if it vary however slightly in any manner profitable to itself, under the complex and sometimes varying conditions of life, will have a better chance of surviving, and thus be naturally selected. From the strong principle of inheritance, any selected variety will tend to propagate its new and modified form.

This fundamental subject of Natural Selection will be treated at some length in the fourth chapter; and we shall then see how Natural Selection almost inevitably causes much Extinction of the less improved forms of life and induces what I have called Divergence of Character. In the next chapter I shall discuss the complex and little known laws of variation and of correlation of growth. In the four succeeding chapters, the most apparent and gravest difficulties on the theory will be given: namely, first, the difficulties of transitions, or understanding how a simple being or a simple organ can be changed and perfected into a highly developed being or elaborately constructed organ; secondly the subject of Instinct, or the mental powers of animals, thirdly, Hybridism, or the infertility of species and the fertility of varieties when intercrossed; and fourthly, the imperfection of the Geological Record. In the next chapter I shall consider the geological succession of organic beings throughout time; in the eleventh and twelfth, their geographical distribution throughout space; in the thirteenth, their classification or mutual affinities, both when mature and in an embryonic condition. In the last chapter I shall give a brief recapitulation of the whole work, and a few concluding remarks.)
No one ought to feel surprise at much remaining as yet unexplained in regard to the origin of species and varieties, if he makes due allowance for our profound ignorance in regard to the mutual relations of all the beings which live around us. Who can explain why one species ranges widely and is very numerous, and why another allied species has a narrow range and is rare? Yet these relations are of the highest importance, for they determine the present welfare, and, as I believe, the future success and modification of every inhabitant of this world. Still less do we know of the mutual relations of the innumerable inhabitants of the world during the many past geological epochs in its history. Although much remains obscure, and will long remain obscure, I can entertain no doubt, after the most deliberate study and dispassionate judgement of which I am capable, that the view which most naturalists entertain, and which I formerly entertained -- namely, that each species has been independently created -- is erroneous. I am fully convinced that species are not immutable; but that those belonging to what are called the same genera are lineal descendants of some other and generally extinct species, in the same manner as the acknowledged varieties of any one species are the descendants of that species. Furthermore, I am convinced that Natural Selection has been the main but not exclusive means of modification.

Chapter 3 -- Struggle for existence

Before entering on the subject of this chapter, I must make a few preliminary remarks, to show how the struggle for existence bears on Natural Selection. It has been seen in the last chapter that amongst organic beings in a state of nature there is some individual variability; indeed I am not aware that this has ever been disputed. It is immaterial for us whether a multitude of doubtful forms be called species or sub-species or varieties; what rank, for instance, the two or three hundred doubtful forms of British plants are entitled to hold, if the existence of any well-marked varieties be admitted. But the mere existence of individual variability and of some few well-marked varieties, though necessary as the foundation for the work, helps us but little in understanding how species arise in nature. How have all those exquisite adaptations of one part of the organisation to another part, and to the conditions of life, and of one distinct organic being to another being, been perfected? We see these beautiful co-adaptations most plainly in the woodpecker and mistletoe; and only a little less plainly in the humblest parasite which clings to the hairs of a quadruped or feathers of a bird; in the structure of the beetle which dives through the water; in the plumed seed which is wafted by the gentlest breeze; in short, we see beautiful adaptations everywhere and in every part of the organic world.

Again, it may be asked, how is it that varieties, which I have called incipient species, become ultimately converted into good and distinct species, which in most cases obviously differ from each other far more than do the varieties of the same species? How do those groups of species, which constitute what are called distinct genera, and which differ from each other more than do the species of the same genus, arise? All these results, as we shall more fully see in the next chapter, follow inevitably from the struggle for life. Owing to this struggle for life, any variation, however slight and from whatever cause proceeding, if it be in any degree profitable to an individual of any species, in its infinitely complex relations to other organic beings and to external nature, will tend to the preservation of that individual, and will generally be inherited by its offspring. The offspring, also, will thus have a better chance of surviving, for, of the many individuals of any species which are periodically born, but a small number can survive. I have called this principle, by which each slight variation, if useful, is preserved, by the term of Natural Selection, in order to mark its relation to man's power of selection. We have seen that man by selection can certainly produce great results, and can adapt organic beings to his own uses, through the accumulation of slight but useful variations, given to him by the hand of Nature. But Natural Selection, as we shall hereafter see, is a power incessantly ready for action, and is as immeasurably superior to man's feeble efforts, as the works of Nature are to those of Art.

We will now discuss in a little more detail the struggle for existence. In my future work this subject shall be treated, as it well deserves, at much greater length. The elder De Candolle and Lyell have largely and
philosophically shown that all organic beings are exposed to severe competition. In regard to plants, no one has treated this subject with more spirit and ability than W. Herbert, Dean of Manchester, evidently the result of his great horticultural knowledge. Nothing is easier than to admit in words the truth of the universal struggle for life, or more difficult at least I have found it so than constantly to bear this conclusion in mind. Yet unless it be thoroughly engrained in the mind, I am convinced that the whole economy of nature, with every fact on distribution, rarity, abundance, extinction, and variation, will be dimly seen or quite misunderstood. We behold the face of nature bright with gladness, we often see superabundance of food; we do not see, or we forget, that the birds which are idly singing round us mostly live on insects or seeds, and are thus constantly destroying life; or we forget how largely these songsters, or their eggs, or their nestlings are destroyed by birds and beasts of prey; we do not always bear in mind, that though food may be now superabundant, it is not so at all seasons of each recurring year.

I should premise that I use the term Struggle for Existence in a large and metaphorical sense, including dependence of one being on another, and including (which is more important) not only the life of the individual, but success in leaving progeny. Two canine animals in a time of dearth, may be truly said to struggle with each other which shall get food and live. But a plant on the edge of a desert is said to struggle for life against the drought, though more properly it should be said to be dependent on the moisture. A plant which annually produces a thousand seeds, of which on an average only one comes to maturity, may be more truly said to struggle with the plants of the same and other kinds which already clothe the ground. The mistletoe is dependent on the apple and a few other trees, but can only in a far-fetched sense be said to struggle with these trees, for if too many of these parasites grow on the same tree, it will languish and die. But several seedling mistletoes, growing close together on the same branch, may more truly be said to struggle with each other. As the mistletoe is disseminated by birds, its existence depends on birds; and it may metaphorically be said to struggle with other fruit-bearing plants, in order to tempt birds to devour and thus disseminate its seeds rather than those of other plants. In these several senses, which pass into each other, I use for convenience sake the general term of struggle for existence.

A struggle for existence inevitably follows from the high rate at which all organic beings tend to increase. Every being, which during its natural lifetime produces several eggs or seeds, must suffer destruction during some period of its life, and during some season or occasional year, otherwise, on the principle of geometrical increase, its numbers would quickly become so inordinately great that no country could support the product. Hence, as more individuals are produced than can possibly survive, there must in every case be a struggle for existence, either one individual with another of the same species, or with the individuals of distinct species, or with the physical conditions of life. It is the doctrine of Malthus applied with manifold force to the whole animal and vegetable kingdoms; for in this case there can be no artificial increase of food, and no prudential restraint from marriage. Although some species may be now increasing, more or less rapidly, in numbers, all cannot do so, for the world would not hold them.

There is no exception to the rule that every organic being naturally increases at so high a rate, that if not destroyed, the earth would soon be covered by the progeny of a single pair. Even slow-breeding man has doubled in twenty-five years, and at this rate, in a few thousand years, there would literally not be standing room for his progeny. Linnaeus has calculated that if an annual plant produced only two seeds and there is no plant so unproductive as this and their seedlings next year produced two, and so on, then in twenty years there would be a million plants. The elephant is reckoned to be the slowest breeder of all known animals, and I have taken some pains to estimate its probable minimum rate of natural increase: it will be under the mark to assume that it breeds when thirty years old, and goes on breeding till ninety years old, bringing forth three pairs of young in this interval; if this be so, at the end of the fifth century there would be alive fifteen million elephants, descended from the first pair.
In looking at Nature, it is most necessary to keep the foregoing considerations always in mind never to forget that every single organic being around us may be said to be striving to the utmost to increase in numbers; that each lives by a struggle at some period of its life; that heavy destruction inevitably falls either on the young or old, during each generation or at recurrent intervals. Lighten any check, mitigate the destruction ever so little, and the number of the species will almost instantaneously increase to any amount. The face of Nature may be compared to a yielding surface, with ten thousand sharp wedges packed close together and driven inwards by incessant blows, sometimes one wedge being struck, and then another with greater force.

It is good thus to try in our imagination to give any form some advantage over another. Probably in no single instance should we know what to do, so as to succeed. It will convince us of our ignorance on the mutual relations of all organic beings; a conviction as necessary, as it seems to be difficult to acquire. All that we can do, is to keep steadily in mind that each organic being is striving to increase at a geometrical ratio; that each at some period of its life, during some season of the year, during each generation or at intervals, has to struggle for life, and to suffer great destruction. When we reflect on this struggle, we may console ourselves with the full belief, that the war of nature is not incessant, that no fear is felt, that death is generally prompt, and that the vigorous, the healthy, and the happy survive and multiply.

Chapt. 4 -- Natural Selection

How will the struggle for existence, discussed too briefly in the last chapter, act in regard to variation? Can the principle of selection, which we have seen is so potent in the hands of man, apply in nature? I think we shall see that it can act most effectually. Let it be borne in mind in what an endless number of strange peculiarities our domestic productions, and, in a lesser degree, those under nature, vary; and how strong the hereditary tendency is. Under domestication, it may be truly said that the, whole organisation becomes in some degree plastic. Let it be borne in mind how infinitely complex and close-fitting are the mutual relations of all organic beings to each other and to their physical conditions of life. Can it, then, be thought improbable, seeing that variations useful to man have undoubtedly occurred, that other variations useful in some way to each being in the great and complex battle of life, should sometimes occur in the course of thousands of generations? If such do occur, can we doubt (remembering that many more individuals are born than can possibly survive) that individuals having any advantage, however slight, over others, would have the best chance of surviving and of procreating their kind? On the other hand, we may feel sure that any variation in the least degree injurious would be rigidly destroyed. This preservation of favourable variations and the rejection of injurious variations, I call Natural Selection. Variations neither useful nor injurious would not be affected by natural selection, and would be left a fluctuating element, as perhaps we see in the species called polymorphic.

As man can produce and certainly has produced a great result by his methodical and unconscious means of selection, what may not nature effect? Man can act only on external and visible characters: nature cares nothing for appearances, except in so far as they may be useful to any being. She can act on every internal organ, on every shade of constitutional difference, on the whole machinery of life. Man selects only for his own good; Nature only for that of the being which she tends. Every selected character is fully exercised by her; and the being is placed under well-suited conditions of life. Man keeps the natives of many climates in the same country; he seldom exercises each selected character in some peculiar and fitting manner; he feeds a long and a short beaked pigeon on the same food; he does not exercise a long-backed or long-legged quadruped in any peculiar manner; he exposes sheep with long and short wool to the same climate. He does not allow the most vigorous males to struggle for the females. He does not rigidly destroy all inferior animals, but protects during each varying season, as far as lies in his power, all his productions. He often begins his selection by some half-monstrous form; or at least by some
modification prominent enough to catch his eye, or to be plainly useful to him. Under nature, the slightest difference of structure or constitution may well turn the nicely-balanced scale in the struggle for life, and so be preserved. How fleeting are the wishes and efforts of man! how short his time! and consequently how poor will his products be, compared with those accumulated by nature during whole geological periods. Can we wonder, then, that nature's productions should be far 'truer' in character than man's productions; that they should be infinitely better adapted to the most complex conditions of life, and should plainly bear the stamp of far higher workmanship?

It may be said that natural selection is daily and hourly scrutinising, throughout the world, every variation, even the slightest; rejecting that which is bad, preserving and adding up all that is good; silently and insensibly working, whenever and wherever opportunity offers, at the improvement of each organic being in relation to its organic and inorganic conditions of life. We see nothing of these slow changes in progress, until the hand of time has marked the long lapses of ages, and then so imperfect is our view into long past geological ages, that we only see that the forms of life are now different from what they formerly were.

Illustrations of the action of Natural Selection -- In order to make it clear how, as I believe, natural selection acts, I must beg permission to give one or two imaginary illustrations. Let us take the case of a wolf, which preys on various animals, securing some by craft, some by strength, and some by fleetness; and let us suppose that the fleetest prey, a deer for instance, had from any change in the country increased in numbers, or that other prey had decreased in numbers, during that season of the year when the wolf is hardest pressed for food. I can under such circumstances see no reason to doubt that the swiftest and slimmest wolves would have the best chance of surviving, and so be preserved or selected, provided always that they retained strength to master their prey at this or at some other period of the year, when they might be compelled to prey on other animals. I can see no more reason to doubt this, than that man can improve the fleetness of his greyhounds by careful and methodical selection, or by that unconscious selection which results from each man trying to keep the best dogs without any thought of modifying the breed.

Even without any change in the proportional numbers of the animals on which our wolf preyed, a cub might be born with an innate tendency to pursue certain kinds of prey. Nor can this be thought very improbable; for we often observe great differences in the natural tendencies of our domestic animals; one cat, for instance, taking to catch rats, another mice; one cat, according to Mr. St. John, bringing home winged game, another hares or rabbits, and another hunting on marshy ground and almost nightly catching woodcocks or snipes. The tendency to catch rats rather than mice is known to be inherited. Now, if any slight innate change of habit or of structure benefited an individual wolf, it would have the best chance of surviving and of being preserved or selected, provided always that they retained strength to master their prey at this or at some other period of the year, when they might be compelled to prey on other animals. I can see no more reason to doubt this, than that man can improve the fleetness of his greyhounds by careful and methodical selection, or by that unconscious selection which results from each man trying to keep the best dogs without any thought of modifying the breed.

Let us now take a more complex case. Certain plants excrete a sweet juice, apparently for the sake of eliminating something injurious from their sap: this is effected by glands at the base of the stipules in some Leguminosae, and at the back of the leaf of the common laurel. This juice, though small in quantity, is greedily sought by insects. Let us now suppose a little sweet juice or nectar to be excreted by the inner
bases of the petals of a flower. In this case insects in seeking the nectar would get dusted with pollen, and would certainly often transport the pollen from one flower to the stigma of another flower. The flowers of two distinct individuals of the same species would thus get crossed; and the act of crossing, we have good reason to believe (as will hereafter be more fully alluded to), would produce very vigorous seedlings, which consequently would have the best chance of flourishing and surviving. Some of these seedlings would probably inherit the nectar-excreting power. Those in individual flowers which had the largest glands or nectaries, and which excreted most nectar, would be oftenest visited by insects, and would be oftenest crossed; and so in the long-run would gain the upper hand. Those flowers, also, which had their stamens and pistils placed, in relation to the size and habits of the particular insects which visited them, so as to favour in any degree the transportal of their pollen from flower to flower, would likewise be favoured or selected. We might have taken the case of insects visiting flowers for the sake of collecting pollen instead of nectar; and as pollen is formed for the sole object of fertilisation, its destruction appears a simple loss to the plant; yet if a little pollen were carried, at first occasionally and then habitually, by the pollen-devouring insects from flower to flower, and a cross thus effected, although nine-tenths of the pollen were destroyed, it might still be a great gain to the plant; and those individuals which produced more and more pollen, and had larger and larger anthers, would be selected.

When our plant, by this process of the continued preservation or natural selection of more and more attractive flowers, had been rendered highly attractive to insects, they would, unintentionally on their part, regularly carry pollen from flower to flower; and that they can most effectually do this, I could easily show by many striking instances. I will give only one not as a very striking case, but as likewise illustrating one step in the separation of the sexes of plants, presently to be alluded to. Some holly-trees bear only male flowers, which have four stamens producing rather a small quantity of pollen, and a rudimentary pistil; other holly-trees bear only female flowers; these have a full-sized pistil, and four stamens with shrivelled anthers, in which not a grain of pollen can be detected. Having found a female tree exactly sixty yards from a male tree, I put the stigmas of twenty flowers, taken from different branches, under the microscope, and on all, without exception, there were pollen-grains, and on some a profusion of pollen. As the wind had set for several days from the female to the male tree, the pollen could not thus have been carried. The weather had been cold and boisterous, and therefore not favourable to bees, nevertheless every female flower which I examined had been effectually fertilised by the bees, accidentally dusted with pollen, having flown from tree to tree in search of nectar. But to return to our imaginary case: as soon as the plant had been rendered so highly attractive to insects that pollen was regularly carried from flower to flower, another process might commence. No naturalist doubts the advantage of what has been called the 'physiological division of labour;' hence we may believe that it would be advantageous to a plant to produce stamens alone in one flower or on one whole plant, and pistils alone in another flower or on another plant. In plants under culture and placed under new conditions of life, sometimes the male organs and sometimes the female organs become more or less impotent; now if we suppose this to occur in ever so slight a degree under nature, then as pollen is already carried regularly from flower to flower, and as a more complete separation of the sexes of our plant would be advantageous on the principle of the division of labour, individuals with this tendency more and more increased, would be continually favoured or selected, until at last a complete separation of the sexes would be effected.

Let us now turn to the nectar-feeding insects in our imaginary case: we may suppose the plant of which we have been slowly increasing the nectar by continued selection, to be a common plant; and that certain insects depended in main part on its nectar for food. I could give many facts, showing how anxious bees are to save time; for instance, their habit of cutting holes and sucking the nectar at the bases of certain flowers, which they can, with a very little more trouble, enter by the mouth. Bearing such facts in mind, I can see no reason to doubt that an accidental deviation in the size and form of the body, or in the curvature and length of the proboscis, &c., far too slight to be appreciated by us, might profit a bee or other insect, so that an individual so characterised would be able to obtain its food more quickly, and so
have a better chance of living and leaving descendants. Its descendants would probably inherit a tendency to a similar slight deviation of structure. The tubes of the corollas of the common red and incarnate clovers (Trifolium pratense and incarnatum) do not on a hasty glance appear to differ in length; yet the hive-bee can easily suck the nectar out of the incarnate clover, but not out of the common red clover, which is visited by humble-bees alone; so that whole fields of the red clover offer in vain an abundant supply of precious nectar to the hive-bee. Thus it might be a great advantage to the hive-bee to have a slightly longer or differently constructed proboscis. On the other hand, I have found by experiment that the fertility of clover greatly depends on bees visiting and moving parts of the corolla, so as to push the pollen on to the stigmatic surface. Hence, again, if humble-bees were to become rare in any country, it might be a great advantage to the red clover to have a shorter or more deeply divided tube to its corolla, so that the hive-bee could visit its flowers. Thus I can understand how a flower and a bee might slowly become, either simultaneously or one after the other, modified and adapted in the most perfect manner to each other, by the continued preservation of individuals presenting mutual and slightly favourable deviations of structure.

I am well aware that this doctrine of natural selection, exemplified in the above imaginary instances, is open to the same objections which were at first urged against Sir Charles Lyell's noble views on 'the modern changes of the earth, as illustrative of geology;' but we now very seldom hear the action, for instance, of the coast-waves, called a trifling and insignificant cause, when applied to the excavation of gigantic valleys or to the formation of the longest lines of inland cliffs. Natural selection can act only by the preservation and accumulation of infinitesimally small inherited modifications, each profitable to the preserved being; and as modern geology has almost banished such views as the excavation of a great valley by a single diluvial wave, so will natural selection, if it be a true principle, banish the belief of the continued creation of new organic beings, or of any great and sudden modification in their structure.

Summary of Chapter
If during the long course of ages and under varying conditions of life, organic beings vary at all in the several parts of their organisation, and I think this cannot be disputed; if there be, owing to the high geometrical powers of increase of each species, at some age, season, or year, a severe struggle for life, and this certainly cannot be disputed; then, considering the infinite complexity of the relations of all organic beings to each other and to their conditions of existence, causing an infinite diversity in structure, constitution, and habits, to be advantageous to them, I think it would be a most extraordinary fact if no variation ever had occurred useful to each being's own welfare, in the same way as so many variations have occurred useful to man. But if variations useful to any organic being do occur, assuredly individuals thus characterised will have the best chance of being preserved in the struggle for life; and from the strong principle of inheritance they will tend to produce offspring similarly characterised. This principle of preservation, I have called, for the sake of brevity, Natural Selection. Natural selection, on the principle of qualities being inherited at corresponding ages, can modify the egg, seed, or young, as easily as the adult. Amongst many animals, sexual selection will give its aid to ordinary selection, by assuring to the most vigorous and best adapted males the greatest number of offspring. Sexual selection will also give characters useful to the males alone, in their struggles with other males.

Whether natural selection has really thus acted in nature, in modifying and adapting the various forms of life to their several conditions and stations, must be judged of by the general tenour and balance of evidence given in the following chapters. But we already see how it entails extinction; and how largely extinction has acted in the world's history, geology plainly declares. Natural selection, also, leads to divergence of character; for more living beings can be supported on the same area the more they diverge in structure, habits, and constitution, of which we see proof by looking at the inhabitants of any small spot or at naturalised productions. Therefore during the modification of the descendants of any one species,
and during the incessant struggle of all species to increase in numbers, the more diversified these
descendants become, the better will be their chance of succeeding in the battle of life. Thus the small
differences distinguishing varieties of the same species, will steadily tend to increase till they come to
equal the greater differences between species of the same genus, or even of distinct genera.

We have seen that it is the common, the widely-diffused, and widely-ranging species, belonging to the
larger genera, which vary most; and these will tend to transmit to their modified offspring that superiority
which now makes them dominant in their own countries. Natural selection, as has just been remarked,
leads to divergence of character and to much extinction of the less improved and intermediate forms of
life. On these principles, I believe, the nature of the affinities of all organic beings may be explained. It is
a truly wonderful fact the wonder of which we are apt to overlook from familiarity that all animals and all
plants throughout all time and space should be related to each other in group subordinate to group, in the
manner which we everywhere behold namely, varieties of the same species most closely related together,
species of the same genus less closely and unequally related together, forming sections and sub-genera,
species of distinct genera much less closely related, and genera related in different degrees, forming sub-
families, families, orders, sub-classes, and classes. The several subordinate groups in any class cannot be
ranked in a single file, but seem rather to be clustered round points, and these round other points, and so
on in almost endless cycles. On the view that each species has been independently created, I can see no
explanation of this great fact in the classification of all organic beings; but, to the best of my judgment, it
is explained through inheritance and the complex action of natural selection, entailing extinction and
divergence of character, as we have seen illustrated in the diagram.

The affinities of all the beings of the same class have sometimes been represented by a great tree. I
believe this simile largely speaks the truth. The green and budding twigs may represent existing species;
and those produced during each former year may represent the long succession of extinct species. At each
period of growth all the growing twigs have tried to branch out on all sides, and to overtop and kill the
surrounding twigs and branches, in the same manner as species and groups of species have tried to
overmaster other species in the great battle for life. The limbs divided into great branches, and these into
lesser and lesser branches, were themselves once, when the tree was small, budding twigs; and this
connexion of the former and present buds by ramifying branches may well represent the classification of
all extinct and living species in groups subordinate to groups. Of the many twigs which flourished when
the tree was a mere bush, only two or three, now grown into great branches, yet survive and bear all the
other branches; so with the species which lived during long-past geological periods, very few now have
living and modified descendants. From the first growth of the tree, many a limb and branch has decayed
and dropped off; and these lost branches of various sizes may represent those whole orders, families, and
genera which have now no living representatives, and which are known to us only from having been
found in a fossil state. As we here and there see a thin straggling branch springing from a fork low down
in a tree, and which by some chance has been favoured and is still alive on its summit, so we occasionally
see an animal like the Ornithorhynchus or Lepidosiren, which in some small degree connects by its
affinities two large branches of life, and which has apparently been saved from fatal competition by
having inhabited a protected station. As buds give rise by growth to fresh buds, and these, if vigorous,
branch out and overtop on all sides many a feebler branch, so by generation I believe it has been with the
great Tree of Life, which fills with its dead and broken branches the crust of the earth, and covers the
surface with its ever branching and beautiful ramifications.

Chapter 14 -- Recapitulation and Conclusion

That many and grave objections may be advanced against the theory of descent with modification through
natural selection, I do not deny. I have endeavoured to give to them their full force. Nothing at first can
appear more difficult to believe than that the more complex organs and instincts should have been
perfected not by means superior to, though analogous with, human reason, but by the accumulation of
innumerable slight variations, each good for the individual possessor. Nevertheless, this difficulty, though appearing to our imagination insuperably great, cannot be considered real if we admit the following propositions, namely, -- that gradations in the perfection of any organ or instinct, which we may consider, either do now exist or could have existed, each good of its kind, -- that all organs and instincts are, in ever so slight a degree, variable, -- and, lastly, that there is a struggle for existence leading to the preservation of each profitable deviation of structure or instinct. The truth of these propositions cannot, I think, be disputed.

On the view that species are only strongly marked and permanent varieties, and that each species first existed as a variety, we can see why it is that no line of demarcation can be drawn between species, commonly supposed to have been produced by special acts of creation, and varieties which are acknowledged to have been produced by secondary laws. On this same view we can understand how it is that in each region where many species of a genus have been produced, and where they now flourish, these same species should present many varieties; for where the manufactory of species has been active, we might expect, as a general rule, to find it still in action; and this is the case if varieties be incipient species. Moreover, the species of the large genera, which afford the greater number of varieties or incipient species, retain to a certain degree the character of varieties; for they differ from each other by a less amount of difference than do the species of smaller genera. The closely allied species also of the larger genera apparently have restricted ranges, and they are clustered in little groups round other species -- in which respects they resemble varieties. These are strange relations on the view of each species having been independently created, but are intelligible if all species first existed as varieties.

As each species tends by its geometrical ratio of reproduction to increase inordinately in number; and as the modified descendants of each species will be enabled to increase by so much the more as they become more diversified in habits and structure, so as to be enabled to seize on many and widely different places in the economy of nature, there will be a constant tendency in natural selection to preserve the most divergent offspring of any one species. Hence during a long-continued course of modification, the slight differences, characteristic of varieties of the same species, tend to be augmented into the greater differences characteristic of species of the same genus. New and improved varieties will inevitably supplant and exterminate the older, less improved and intermediate varieties; and thus species are rendered to a large extent defined and distinct objects. Dominant species belonging to the larger groups tend to give birth to new and dominant forms; so that each large group tends to become still larger, and at the same time more divergent in character. But as all groups cannot thus succeed in increasing in size, for the world would not hold them, the more dominant groups beat the less dominant. This tendency in the large groups to go on increasing in size and diverging in character, together with the almost inevitable contingency of much extinction, explains the arrangement of all the forms of life, in groups subordinate to groups, all within a few great classes, which we now see everywhere around us, and which has prevailed throughout all time. This grand fact of the grouping of all organic beings seems to me utterly inexplicable on the theory of creation.

As natural selection acts solely by accumulating slight, successive, favourable variations, it can produce no great or sudden modification; it can act only by very short and slow steps. Hence the canon of `Natura non facit saltum,' which every fresh addition to our knowledge tends to make more strictly correct, is on this theory simply intelligible. We can plainly see why nature is prodigal in variety, though niggard in innovation. But why this should be a law of nature if each species has been independently created, no man can explain.

Many other facts are, as it seems to me, explicable on this theory. How strange it is that a bird, under the form of woodpecker, should have been created to prey on insects on the ground; that upland geese, which never or rarely swim, should have been created with webbed feet; that a thrush should have been created to dive and feed on sub-aquatic insects; and that a petrel should have been created with habits and
structure fitting it for the life of an auk or grebe! and so on in endless other cases. But on the view of each species constantly trying to increase in number, with natural selection always ready to adapt the slowly varying descendants of each to any unoccupied or ill-occupied place in nature, these facts cease to be strange, or perhaps might even have been anticipated.

As natural selection acts by competition, it adapts the inhabitants of each country only in relation to the degree of perfection of their associates; so that we need feel no surprise at the inhabitants of any one country, although on the ordinary view supposed to have been specially created and adapted for that country, being beaten and supplanted by the naturalised productions from another land. Nor ought we to marvel if all the contrivances in nature be not, as far as we can judge, absolutely perfect; and if some of them be abhorrent to our ideas of fitness. We need not marvel at the sting of the bee causing the bee's own death; at drones being produced in such vast numbers for one single act, and being then slaughtered by their sterile sisters; at the astonishing waste of pollen by our fir-trees; at the instinctive hatred of the queen bee for her own fertile daughters; at ichneumonidae feeding within the live bodies of caterpillars; and at other such cases. The wonder indeed is, on the theory of natural selection, that more cases of the want of absolute perfection have not been observed.

The complex and little known laws governing variation are the same, as far as we can see, with the laws which have governed the production of so-called specific forms. In both cases physical conditions seem to have produced but little direct effect; yet when varieties enter any zone, they occasionally assume some of the characters of the species proper to that zone. In both varieties and species, use and disuse seem to have produced some effect; for it is difficult to resist this conclusion when we look, for instance, at the logger-headed duck, which has wings incapable of flight, in nearly the same condition as in the domestic duck; or when we look at the burrowing tucutucu, which is occasionally blind, and then at certain moles, which are habitually blind and have their eyes covered with skin; or when we look at the blind animals inhabiting the dark caves of America and Europe. In both varieties and species correction of growth seems to have played a most important part, so that when one part has been modified other parts are necessarily modified. In both varieties and species reversions to long-lost characters occur. How inexplicable on the theory of creation is the occasional appearance of stripes on the shoulder and legs of the several species of the horse-genus and in their hybrids! How simply is this fact explained if we believe that these species have descended from a striped progenitor, in the same manner as the several domestic breeds of pigeon have descended from the blue and barred rock-pigeon!

On the ordinary view of each species having been independently created, why should the specific characters, or those by which the species of the same genus differ from each other, be more variable than the generic characters in which they all agree? Why, for instance, should the colour of a flower be more likely to vary in any one species of a genus, if the other species, supposed to have been created independently, have differently coloured flowers, than if all the species of the genus have the same coloured flowers? If species are only well-marked varieties, of which the characters have become in a high degree permanent, we can understand this fact; for they have already varied since they branched off from a common progenitor in certain characters, by which they have come to be specifically distinct from each other; and therefore these same characters would be more likely still to be variable than the generic characters which have been inherited without change for an enormous period. It is inexplicable on the theory of creation why a part developed in a very unusual manner in any one species of a genus, and therefore, as we may naturally infer, of great importance to the species, should be eminently liable to variation; but, on my view, this part has undergone, since the several species branched off from a common progenitor, an unusual amount of variability and modification, and therefore we might expect this part generally to be still variable. But a part may be developed in the most unusual manner, like the wing of a bat, and yet not be more variable than any other structure, if the part be common to many subordinate forms, that is, if it has been inherited for a very long period; for in this case it will have been rendered constant by long-continued natural selection.
Glancing at instincts, marvellous as some are, they offer no greater difficulty than does corporeal structure on the theory of the natural selection of successive, slight, but profitable modifications. We can thus understand why nature moves by graduated steps in endowing different animals of the same class with their several instincts. I have attempted to show how much light the principle of gradation throws on the admirable architectural powers of the hive-bee. Habit no doubt sometimes comes into play in modifying instincts; but it certainly is not indispensable, as we see, in the case of neuter insects, which leave no progeny to inherit the effects of long-continued habit. On the view of all the species of the same genus having descended from a common parent, and having inherited much in common, we can understand how it is that allied species, when placed under considerably different conditions of life, yet should follow nearly the same instincts; why the thrush of South America, for instance, lines her nest with mud like our British species. On the view of instincts having been slowly acquired through natural selection we need not marvel at some instincts being apparently not perfect and liable to mistakes, and at many instincts causing other animals to suffer.

If species be only well-marked and permanent varieties, we can at once see why their crossed offspring should follow the same complex laws in their degrees and kinds of resemblance to their parents, -- in being absorbed into each other by successive crosses, and in other such points, -- as do the crossed offspring of acknowledged varieties. On the other hand, these would be strange facts if species have been independently created, and varieties have been produced by secondary laws.

Looking to geographical distribution, if we admit that there has been during the long course of ages much migration from one part of the world to another, owing to former climatal and geographical changes and to the many occasional and unknown means of dispersal, then we can understand, on the theory of descent with modification, most of the great leading facts in Distribution. We can see why there should be so striking a parallelism in the distribution of organic beings throughout space, and in their geological succession throughout time; for in both cases the beings have been connected by the bond of ordinary generation, and the means of modification have been the same. We see the full meaning of the wonderful fact, which must have struck every traveller, namely, that on the same continent, under the most diverse conditions, under heat and cold, on mountain and lowland, on deserts and marshes, most of the inhabitants within each great class are plainly related; for they will generally be descendants of the same progenitors and early colonists. On this same principle of former migration, combined in most cases with modification, we can understand, by the aid of the Glacial period, the identity of some few plants, and the close alliance of many others, on the most distant mountains, under the most different climates; and likewise the close alliance of some of the inhabitants of the sea in the northern and southern temperate zones, though separated by the whole intertropical ocean. Although two areas may present the same physical conditions of life, we need feel no surprise at their inhabitants being widely different, if they have been for a long period completely separated from each other; for as the relation of organism to organism is the most important of all relations, and as the two areas will have received colonists from some third source or from each other, at various periods and in different proportions, the course of modification in the two areas will inevitably be different.

On this view of migration, with subsequent modification, we can see why oceanic islands should be inhabited by few species, but of these, that many should be peculiar. We can clearly see why those animals which cannot cross wide spaces of ocean, as frogs and terrestrial mammals, should not inhabit oceanic islands; and why, on the other hand, new and peculiar species of bats, which can traverse the ocean, should so often be found on islands far distant from any continent. Such facts as the presence of peculiar species of bats, and the absence of all other mammals, on oceanic islands, are utterly inexplicable on the theory of independent acts of creation.
The existence of closely allied or representative species in any two areas, implies, on the theory of
descent with modification, that the same parents formerly inhabited both areas; and we almost invariably
find that wherever many closely allied species inhabit two areas, some identical species common to both
still exist. Wherever many closely allied yet distinct species occur, many doubtful forms and varieties of
the same species likewise occur. It is a rule of high generality that the inhabitants of each area are related
to the inhabitants of the nearest source whence immigrants might have been derived. We see this in nearly
all the plants and animals of the Galapagos archipelago, of Juan Fernandez, and of the other American
islands being related in the most striking manner to the plants and animals of the neighbouring American
mainland; and those of the Cape de Verde archipelago and other African islands to the African mainland.
It must be admitted that these facts receive no explanation on the theory of creation.

The fact, as we have seen, that all past and present organic beings constitute one grand natural system,
with group subordinate to group, and with extinct groups often falling in between recent groups, is
intelligible on the theory of natural selection with its contingencies of extinction and divergence of
character. On these same principles we see how it is, that the mutual affinities of the species and genera
within each class are so complex and circuitous. We see why certain characters are far more serviceable
than others for classification; -- why adaptive characters, though of paramount importance to the being,
are of hardly any importance in classification; why characters derived from rudimentary parts, though of
no service to the being, are often of high classificatory value; and why embryological characters are the
most valuable of all. The real affinities of all organic beings are due to inheritance or community of
descent. The natural system is a genealogical arrangement, in which we have to discover the lines of
descent by the most permanent characters, however slight their vital importance may be.

The framework of bones being the same in the hand of a man, wing of a bat, fin of the porpoise, and leg
of the horse, -- the same number of vertebrae forming the neck of the giraffe and of the elephant, -- and
innumerable other such facts, at once explain themselves on the theory of descent with slow and slight
successive modifications. The similarity of pattern in the wing and leg of a bat, though used for such
different purposes, -- in the jaws and legs of a crab, -- in the petals, stamens, and pistils of a flower, is
likewise intelligible on the view of the gradual modification of parts or organs, which were alike in the
early progenitor of each class. On the principle of successive variations not always supervening at an
early age, and being inherited at a corresponding not early period of life, we can clearly see why the
embryos of mammals, birds, reptiles, and fishes should be so closely alike, and should be so unlike the
adult forms. We may cease marvelling at the embryo of an air-breathing mammal or bird having branchial
slits and arteries running in loops, like those in a fish which has to breathe the air dissolved in water, by
the aid of well-developed branchiae.

Disuse, aided sometimes by natural selection, will often tend to reduce an organ, when it has become
useless by changed habits or under changed conditions of life; and we can clearly understand on this view
the meaning of rudimentary organs. But disuse and selection will generally act on each creature, when it
has come to maturity and has to play its full part in the struggle for existence, and will thus have little
power of acting on an organ during early life; hence the organ will not be much reduced or rendered
rudimentary at this early age. The calf, for instance, has inherited teeth, which never cut through the gums
of the upper jaw, from an early progenitor having well-developed teeth; and we may believe, that the
teeth in the mature animal were reduced, during successive generations, by disuse or by the tongue and
palate having been fitted by natural selection to browse without their aid; whereas in the calf, the teeth
have been left untouched by selection or disuse, and on the principle of inheritance at corresponding ages
have been inherited from a remote period to the present day. On the view of each organic being and each
separate organ having been specially created, how utterly inexplicable it is that parts, like the teeth in the
embryonic calf or like the shrivelled wings under the soldered wing-covers of some beetles, should thus
so frequently bear the plain stamp of inutility! Nature may be said to have taken pains to reveal, by
rudimentary organs and by homologous structures, her scheme of modification, which it seems that we
wilfully will not understand.

I have now recapitulated the chief facts and considerations which have thoroughly convinced me that
species have changed, and are still slowly changing by the preservation and accumulation of successive
slight favourable variations. Why, it may be asked, have all the most eminent living naturalists and
geologists rejected this view of the mutability of species? It cannot be asserted that organic beings in a
state of nature are subject to no variation; it cannot be proved that the amount of variation in the course of
long ages is a limited quantity; no clear distinction has been, or can be, drawn between species and well-
marked varieties. It cannot be maintained that species when intercrossed are invariably sterile, and
varieties invariably fertile; or that sterility is a special endowment and sign of creation. The belief that
species were immutable productions was almost unavoidable as long as the history of the world was
thought to be of short duration; and now that we have acquired some idea of the lapse of time, we are too
apt to assume, without proof, that the geological record is so perfect that it would have afforded us plain
evidence of the mutation of species, if they had undergone mutation.

But the chief cause of our natural unwillingness to admit that one species has given birth to other and
distinct species, is that we are always slow in admitting any great change of which we do not see the
intermediate steps. The difficulty is the same as that felt by so many geologists, when Lyell first insisted
that long lines of inland cliffs had been formed, and great valleys excavated, by the slow action of the
coast-waves. The mind cannot possibly grasp the full meaning of the term of a hundred million years; it
cannot add up and perceive the full effects of many slight variations, accumulated during an almost
infinite number of generations.

Although I am fully convinced of the truth of the views given in this volume under the form of an
abstract, I by no means expect to convince experienced naturalists whose minds are stocked with a
multitude of facts all viewed, during a long course of years, from a point of view directly opposite to
mine. It is so easy to hide our ignorance under such expressions as the `plan of creation,' `unity of design,'
&c., and to think that we give an explanation when we only restate a fact. Any one whose disposition
leads him to attach more weight to unexplained difficulties than to the explanation of a certain number of
facts will certainly reject my theory. A few naturalists, endowed with much flexibility of mind, and who
have already begun to doubt on the immutability of species, may be influenced by this volume; but I look
with confidence to the future, to young and rising naturalists, who will be able to view both sides of the
question with impartiality. Whoever is led to believe that species are mutable will do good service by
conscientiously expressing his conviction; for only thus can the load of prejudice by which this subject is
overwhelmed be removed.

It may be asked how far I extend the doctrine of the modification of species. The question is difficult to
answer, because the more distinct the forms are which we may consider, by so much the arguments fall
away in force. But some arguments of the greatest weight extend very far. All the members of whole
classes can be connected together by chains of affinities, and all can be classified on the same principle, in
groups subordinate to groups. Fossil remains sometimes tend to fill up very wide intervals between
existing orders. Organs in a rudimentary condition plainly show that an early progenitor had the organ in
a fully developed state; and this in some instances necessarily implies an enormous amount of
modification in the descendants. Throughout whole classes various structures are formed on the same
pattern, and at an embryonic age the species closely resemble each other. Therefore I cannot doubt that
the theory of descent with modification embraces all the members of the same class. I believe that animals
have descended from at most only four or five progenitors, and plants from an equal or lesser number.

Analogy would lead me one step further, namely, to the belief that all animals and plants have descended
from some one prototype. But analogy may be a deceitful guide. Nevertheless all living things have much
in common, in their chemical composition, their germinal vesicles, their cellular structure, and their laws of growth and reproduction. We see this even in so trifling a circumstance as that the same poison often similarly affects plants and animals; or that the poison secreted by the gall-fly produces monstrous growths on the wild rose or oak-tree. Therefore I should infer from analogy that probably all the organic beings which have ever lived on this earth have descended from some one primordial form, into which life was first breathed.

When the views entertained in this volume on the origin of species, or when analogous views are generally admitted, we can dimly foresee that there will be a considerable revolution in natural history. Systematists will be able to pursue their labours as at present; but they will not be incessantly haunted by the shadowy doubt whether this or that form be in essence a species. This I feel sure, and I speak after experience, will be no slight relief. The endless disputes whether or not some fifty species of British brambles are true species will cease. Systematists will have only to decide (not that this will be easy) whether any form be sufficiently constant and distinct from other forms, to be capable of definition; and if definable, whether the differences be sufficiently important to deserve a specific name. This latter point will become a far more essential consideration than it is at present; for differences, however slight, between any two forms, if not blended by intermediate gradations, are looked at by most naturalists as sufficient to raise both forms to the rank of species. Hereafter we shall be compelled to acknowledge that the only distinction between species and well-marked varieties is, that the latter are known, or believed, to be connected at the present day by intermediate gradations, whereas species were formerly thus connected. Hence, without quite rejecting the consideration of the present existence of intermediate gradations between any two forms, we shall be led to weigh more carefully and to value higher the actual amount of difference between them. It is quite possible that forms now generally acknowledged to be merely varieties may hereafter be thought worthy of specific names, as with the primrose and cowslip; and in this case scientific and common language will come into accordance. In short, we shall have to treat species in the same manner as those naturalists treat genera, who admit that genera are merely artificial combinations made for convenience. This may not be a cheering prospect; but we shall at least be freed from the vain search for the undiscovered and undiscoverable essence of the term species.

The other and more general departments of natural history will rise greatly in interest. The terms used by naturalists of affinity, relationship, community of type, paternity, morphology, adaptive characters, rudimentary and aborted organs, &c., will cease to be metaphorical, and will have a plain signification. When we no longer look at an organic being as a savage looks at a ship, as at something wholly beyond his comprehension; when we regard every production of nature as one which has had a history; when we contemplate every complex structure and instinct as the summing up of many contrivances, nearly in the same way as when we look at any great mechanical invention as the summing up of the labour, the experience, the reason, and even the blunders of numerous workmen; when we thus view each organic being, how far more interesting, I speak from experience, will the study of natural history become!

A grand and almost untrodden field of inquiry will be opened, on the causes and laws of variation, on correlation of growth, on the effects of use and disuse, on the direct action of external conditions, and so forth. The study of domestic productions will rise immensely in value. A new variety raised by man will be a far more important and interesting subject for study than one more species added to the infinitude of already recorded species. Our classifications will come to be, as far as they can be so made, genealogies; and will then truly give what may be called the plan of creation. The rules for classifying will no doubt become simpler when we have a definite object in view. We possess no pedigrees or armorial bearings; and we have to discover and trace the many diverging lines of descent in our natural genealogies, by characters of any kind which have long been inherited. Rudimentary organs will speak infallibly with respect to the nature of long-lost structures. Species and groups of species, which are called aberrant, and
which may fancifully be called living fossils, will aid us in forming a picture of the ancient forms of life. Embryology will reveal to us the structure, in some degree obscured, of the prototypes of each great class.

When we can feel assured that all the individuals of the same species, and all the closely allied species of most genera, have within a not very remote period descended from one parent, and have migrated from some one birthplace; and when we better know the many means of migration, then, by the light which geology now throws, and will continue to throw, on former changes of climate and of the level of the land, we shall surely be enabled to trace in an admirable manner the former migrations of the inhabitants of the whole world. Even at present, by comparing the differences of the inhabitants of the sea on the opposite sides of a continent, and the nature of the various inhabitants of that continent in relation to their apparent means of immigration, some light can be thrown on ancient geography.

In the distant future I see open fields for far more important researches. Psychology will be based on a new foundation, that of the necessary acquirement of each mental power and capacity by gradation. Light will be thrown on the origin of man and his history.

Authors of the highest eminence seem to be fully satisfied with the view that each species has been independently created. To my mind it accords better with what we know of the laws impressed on matter by the Creator, that the production and extinction of the past and present inhabitants of the world should have been due to secondary causes, like those determining the birth and death of the individual. When I view all beings not as special creations, but as the lineal descendants of some few beings which lived long before the first bed of the Silurian system was deposited, they seem to me to become ennobled. Judging from the past, we may safely infer that not one living species will transmit its unaltered likeness to a distant futurity. And of the species now living very few will transmit progeny of any kind to a far distant futurity; for the manner in which all organic beings are grouped, shows that the greater number of species of each genus, and all the species of many genera, have left no descendants, but have become utterly extinct. We can so far take a prophetic glance into futurity as to foretel that it will be the common and widely-spread species, belonging to the larger and dominant groups, which will ultimately prevail and procreate new and dominant species. As all the living forms of life are the lineal descendants of those which lived long before the Silurian epoch, we may feel certain that the ordinary succession by generation has never once been broken, and that no cataclysm has desolated the whole world. Hence we may look with some confidence to a secure future of equally inappreciable length. And as natural selection works solely by and for the good of each being, all corporeal and mental endowments will tend to progress towards perfection.

It is interesting to contemplate an entangled bank, clothed with many plants of many kinds, with birds singing on the bushes, with various insects flitting about, and with worms crawling through the damp earth, and to reflect that these elaborately constructed forms, so different from each other, and dependent on each other in so complex a manner, have all been produced by laws acting around us. These laws, taken in the largest sense, being Growth with Reproduction; inheritance which is almost implied by reproduction; Variability from the indirect and direct action of the external conditions of life, and from use and disuse; a Ratio of Increase so high as to lead to a Struggle for Life, and as a consequence to Natural Selection, entailing Divergence of Character and the Extinction of less-improved forms. Thus, from the war of nature, from famine and death, the most exalted object which we are capable of conceiving, namely, the production of the higher animals, directly follows. There is grandeur in this view of life, with its several powers, having been originally breathed into a few forms or into one; and that, whilst this planet has gone cycling on according to the fixed law of gravity, from so simple a beginning endless forms most beautiful and most wonderful have been, and are being, evolved.